In celebration of Mystery in Science

As many teachers do during the summer, I brainstormed some ideas and themes I wanted to discuss in the upcoming school year. To do this, I started comparing my experience teaching science with that of my life as  a researcher in R&D. I concluded that there was an element of mystery that drove my bench research that was decidedly missing in many science classrooms. For bench scientists, much of their time conducting research is spent controlling variables and perfecting models that seek to reduce as much mystery as possible but undoubtedly, some still remains. For students, that is a good thing. When mystery is properly integrated, it facilitates curiosity, a necessary skill for all students to have regardless of the subject matter.

Most labs in science classrooms are designed to reduce frustration associated with the mystery of lab work. The steps are clear or can be fairly easily elucidated, and the results are usually prescribed given that post lab questions are often tied to the achievements of a certain result. This predictability can  be easier for the student, especially those who aren’t comfortable with the idea of “not getting the right result.” This summer, I have been thinking about ways to resolve the differences between the true nature of mystery in science with the student’s desire for scientific predictability. This blog entry will not provide a decisive answer but rather highlight some of the places I am going to add elements of mystery to my lab curricula this year.

I am calling the first type “Mystery in Method.” The students start with the same set of ingredients and devise a way to get to a set end point. Example experiments could include giving each student a plant in water (elodea or chara) and creating a methodology to increase and/or decrease photosynthetic rate by altering the water environment. Obviously, the mystery is creating a testable protocol to follow to reach a conclusion which, in this case, would be some readout of photosynthetic efficacy, perhaps CO2 consumption or O2 production. I’ve already integrated Mystery in Method many times in public schools and noted that while there was initial hesitation and lots of frustration, with guidance and time, the students adapted to it and found a greater sense of engagement in lab by year’s end.

The second type is called “Mystery in Results”, and obviously the mystery appears at the end. This can usually be accomplished by giving the students a specific set of instructions to follow to look at some experimental read out of their experiment. One example would involve students growing bacteria from different sources and isolating their DNA. Then, the students could perform a restriction enzyme digest on their own samples to see how the sequences of the DNA differed by running the purified DNA samples on an agarose gel to examine the different lengths that result. Both the digest and the gel have their own specific instructions that must be followed, but the starting and ending points of the experiment allow for an element of mystery. Another example would be doing a simple chemiluminescence experiment with luminol, ammonium ferracyanide, hydrochloric acid, and sodium hydroxide to get a glowing beaker. Here the students don’t know what the end looks like but will get a truly cool looking result if they follow the steps accurately.

The final type of experiment is what I refer to as the “Cave of Mystery” and combines the creation of a protocol with the gathering of mysterious results. This experiment is the ultimate replicator of mystery as experienced by biotechnological researchers. It begins with an idea and not much else. It’s then up to the student to determine how to research the idea, devise a strategy to test it, determine what data to collect, and how to use what is collected to guide further experiments. This sort of experiment is challenging, time-consuming, often repetitive and ultimately, the best way to understand true scientific inquiry. I’ll write a longer post about navigating the “Cave of Mystery” as a means of science fair project creation during the winter, but for now these sorts of experiments are great long term projects.

By re-introducing science students to the power of mystery, it creates ownership of the experiments and really gives the students a chance to experience the ectasy and agony of being a scientist. So here’s to a wonderful 2015-2016 school year, and may you all embrace the mystery of discovery!