The Quest to Cut Vocab and Not Experience

I went to school for molecular biology for 6 years and then worked in the field another 7, so how do I distill down 13 years of jargon so that my middle schoolers will be able to do a transformation and understand the general process and how it goes down? I start with useful vocab that they need to be familiar with so they understand the procedure: competent cells, transformation, DNA, and a few others. Then, the reagents: Inoue Buffer, E Coli, ampicillin, plasmid. This way, the students can read through the manufacturer’s protocols and follow the procedure as well as understand the basic idea of how DNA works in concert with organisms. There are definitely details I leave out, but I can guide students toward them in post-lab or focus on them in other activities.

Apparently, there is a name for this. It’s called “just in time” learning, and it reminded me of the sort of thing I had to do in the workplace. A problem would arise regarding a certain pathway. Then, I had to research and understand the pathway using literature and find a way to problem solve by utilizing experimental design. Of course,” just in time learning” isn’t just limited to the sciences. It is useful to every field, and I love lessons where science can be used as a jumping off point into multidisciplinary areas. After all, no one concept is an island.

The key terms that I chose to concentrate on I deemed to be a reasonable entry point for the students who have some knowledge of general biology but lack a lot of the finer details. I planned a follow up lesson using DNA ligations to explore more about DNA, including some gritty details of its structure, such as the directionality of the backbone, an essential concept in understanding restriction enzymes, their mechanism, and their usefulness when working with DNA plasmids. By the end of that unit, my hope is that students will have worked with DNA enough so that not only the concept of genes, but of all of the things that work with things to make proteins, is emblazoned in their minds.

As the student’s lab reports are coming in, I will see how well they integrated the knowledge. The more advanced the students are, the more I expect to see ties into that theory, and my revisions for them will probe into the areas where the detail was scant or off. Making mistakes is the first step to fluency whenever one learns a new language, and molecular biology is just that.